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This report sumarizes the resu l ts  obtained during the f i r s t  year 

o f  a continuing e f f o r t  on the general top ic  o f  d iscrete approximations 

f o r  real-time f l i g h t  simulation. The report  i s  divided i n t o  f i ve  na jor  

topics as follows: 

I. D ig i ta l  Autopilot Modelling--consideration o f  the par t icu lar  

problem of approximation of continuous autopi lots by d i g i t a l  autopilots. 

2. Frequency Cknnai n Synthesis of Di screte bpresentations-use o f  

Rode p lo ts  and synthesis of t ransfer  functions by asymptotic f i t s  i n  

a warped frequency donrain. 

3. Substi tut ional Methods--an investigation o f  the various sub- 

s t i t u t i o n  formulas, including the e f fec ts  o f  nonl ineari t ies. 

4. Use of Pade approximation t o  the solut ion of the matr ix expo- 

nential ar is ing from the discrete state equations. 

5. An Analytical Integrat ion o f  the State Equation Using Interpo- 

lated Input--uses pol y m i a  I approximations t o  the input signal and 

integrates the state equations analyt ical ly .  

Each of the sections i s  self-contained i n  tha t  the developments 

and conclusions are contained i n  each section. 

The work presented i n  t h i s  report  represents the i n i t i a l  e f f o r t s  

and preliminary investigations o f  the topics covered. The actual appl i-  

cat ion of  the various techniques has been l imi ted t o  some rather simple 

l inear and nonlinear systems, while the emphasis has been placed on 

theoretical investigations. This emphasis w i l l  s h i f t  smwha t  i n  future 

e f f o r t s  as more complex and nonlinear systems are simulated with the 

techniques which appear most promising as a resu l t  o f  the work presented 

i n  t h i s  report. 



11. DIGITAL AUTOPILOT DESIGN 

Introduct ior. - 
The purpos~  o f  t h i s  par t  of  the research i s  t o  establ ish c r i t e r i a  

f o r  approximating continuous autopi lots wi th d i g i t a l  autopi lots. . t  

i s  desired tha t  the performance of an a i r c r a f t  wi th a d i g i t a l  a u t o p ~ l o t  

be s imi lar  enough t o  the continuous autop i lo t  which it i s  t o  replace 

tha t  p i l o t s  cannot perceive a difference between them. This i s  the 

f i r s t  o f  three levels of work being considered i n  the investigation o f  

d i g i t a l  autopilots. The three levels are: 

I. The problem of replacing ex is t ing continuous autopi lots wi th 

a d i g i t a l l y  implemented autop i lo t  tha t  i s  as nearly indistinguishable 

as pract ical  from the continuous autopi lot .  

2. Design o f  autopi lots using d i g i t a l  control methods based on 

or ig ina l  ~erfonnance specifications. 

, P o c p ~ i f i r a + i n n  nf n i r r r c * +  centre! s y s t a s  and use o f  modern 

methods t o  control and optimize system performance for  f l i g h t  situations, 

s ~ c h  as optimal fuel control which ex is t ing autopi lots do not provide. 

Although the ideal s i tuat ion i s  f o r  the performance o f  new d i g i t a l  

autopi lots t o  be identical t o  the continuous systems they replace, it i s  

easy t o  prove that, i n  general, it i s  not possible t o  f i nd  exact dis- 

crete equivalents t o  continuous systems. The pr incipal  diffzrences i n  

the output signals w i l l  be: 

I. phase s h i f t  and attenuation due t o  the zero order hold a t  the 

computer output. 

2. phase s h i f t  and gain due t o  the d i g i t a l  representation o f  the 

continuous autop i lo t  transfer function. 

3. a l ias ing of  high frequency input components. 

4 .  d is to r t ion  components due t o  sample-hold operations. 

Although these can resu l t  i n  major differences i n  the resu l ts  of 

the two implementations, it should be possible t o  make them conform t o  

commonly used control specif icat ions t o  wi th in  any accuracy desired i f  

the sampling frequency of the d i g i t a l  system i s  made high enough; but ,  



unfortunately, t h i s  p a r m t e r  i s  usual ly  r e s t r i c t e d  because it i s  desired 

+O keep t h s  s.=q! Ing qrequencv as low as p rac t i ca l  t o  minimize computer 

capacity. Sample frequency i s  a major parameter i n  the  study. 

A log ical  approach and the  one used here i s  t o  use design spec i f i -  

cat ions o f  continuous au top i l o t  systems, b u t  keep i n  mind a l so  t h a t  t he  

o r i g i r a l  design was based on continuous contro l  technology and should 

take i n t o  account any new factors introduced by a d i g i t a l  cont ro l le r .  

The o r ig ina l  speci f icat ions are not  ava i lab le  bu t  they undoubtedly C2.11 

consisted of such fac tors  as phase margin, gain margin, magnification, 

closed I m p  pole locations, r i s e  time, overshoot, delay time, s e t t l i n g  

time, mean squared e r r o r  t o  stochast ic inputs, f i n a l  value o f  error,  

dynamic t racking error ,  and bandwidth. 

l nvest igat ion o f  Ga i n  and Phase Shi f t Errors Due t o  Di scre t  i zat ion 

Discrete approximation techniques t o  represent continuous funct ions 

i n  d i g i t a l  computers are studied and compared i n  the  following. As 

already stated, the ob jec t ive  i s  t o  design d i g i t a l  con t ro l l e rs  which w i l l  

subs t i tu te  f o r  ex i s t i ng  analog contro l lers,  such t h a t  the d i g i t a l  con- 

t r o l  l e rs  are as simi l a r  i n  funct ion as prac t ica l  t o  the hardware they 

replace. Evaluation on an input-output basis w i l l  make use o f  phase 

and gain specif icat ions. 

Consider the au top i l o t  t rans fer  funct ion f o r  a comnercial a i r c r a f t  

as shown i n  Fig. 2.1. It i s  

where U(s) i s  the  Laplace transform o f  the p i t c h  r a t e  input signal and 

Y(s) i s  the Laplace transform o f  the contro l  s ignal.  The Bode diagram 

f o r  the above t rans fer  funct ion i s  shown i n  Fig. 2.2. I t  i s  in fer red 

from the f i gu re  t h a t  the crossover frequency f o r  the closed loop system 

should be located a t  about w = 3 rad/sec. The crossover frequency i s  

o f  special importance and w i l l  be used i n  l a t e r  discussions. 



Pi lo t  

Figure 2.1 Autopl lot Transfer Functfon for a Commercial Alrtraf t  
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Figure 2.2 Attenuation Diagram for Continuous Autopilot 



Dl screte Approximation 

I f  G(s) i s  a continuous t rans fe r  funct ion as shawn i n  Fig. 2.3(a), 

i t s  d iscre te  counterpart would appear as i n  Fig. 2.3(b) where 

The ideal d iscrete system f o r  t h e  appl icat ions here would 5e one 

t h a t  y ie lds  

y f  (t) = y ( t )  f o r  a l l  t - > 0 (2.5) 

However due t o  the d iscre te  nature o f  the d i g i t a l  cont ro l le r ,  

it i s  impossible t o  rea l i ze  Eq. (2.5) exactly. The best possible dis- 

c re te  system could give, instead, 

y f ( t )  = y ( t )  f o r  t = 0,Tr2T, ... (2.6) 

where T i s  the sampling period. Because 

i n  t h i s  case Eq. (2.6) i s  s a t i s f i e d  

YX(s) = Ydf(s) 

Using Eqs. (2.31, (2.41, and (2.91, 

[G~(s )E(s ) ] *  = G ~ * ( s ) E * ( s ) .  

Taking the z-transform o f  both sides of Eq. (2. lo), 

ZIGcts)E(s) l  = G,,(z)E(z) 
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where ZC* )  indicates the  z-transform. 

I n  Eq. (2.121, D(z )  cannot be obtained independent o f  the input  

funct ion e ( t ) .  This j u s t i f i e s  the  previous asser t ion t h a t  an exact 

d i g i t a l  equivalent o f  the continuouc au top i l o t  cannot be obtained. Thus 

one must s e t t l e  f o r  a d i f ference equation t rans fer  funct ion t h a t  gives 

an acceptable approximation t o  the solut ions f o r  an a r b i t r a r y  input, 

e ( t ) .  

Various d iscre te  approximation techniques have been proposed t o  

transform a previously designed continuous c o n t r o l l e r  i n t o  a d iscrete 

equivalent. These d iscre te  approximation techniques can be d iv ided 

i n t o  three broad categories: ( I )  numerical methods (21 operat ional 

methods (3 )  input  approximation methods. 

Numerical methods general ly pr-ovide a means of ob ta in ing  accurate 

approximation. However, s ince these methods general ly take a great deal 

o f  ca lcu la t ion  time, t h e i r  app l ica t ion  t o  d isc re te  approximations i s  

o f ten  l imited. I n  the  operat ional methods, every in tegra t ing  operator 

o f  the continuous t rans fer  funct ion i s  replaced by a d iscre te  in tegra t ing  

cperator i n  order t o  ob ta in  the d iscre te  t rans fe r  funct ion. I n  the 

input  approximation methods, the input  i s  assumed t o  be approximated 

i n  a c e r t a i n  way, f o r  example, by a s ta i r -s tep funct ion, o r  by s t r a i g h t  

l i n e  segments, etc. 

I n  the I i terature, Tust i  n 's  method i s  general 1 y preferred among 

the operational methods and the l inear  segment input approximation method 

i s  considered t o  be one o f  the best input approximation methods. These 

two methods w i l l  be used i n  the fo l lowing discussion f o  show t h a t  the 

degree t o  which the d i g i t a l  contro l  system approximates the continuous 

system i s  determined p r imar i l y  by the zero-order hold rather  than by 

the d iscre te  representation (i.e., d i sc re t i za t i on )  o f  the continuous 

c o n t r o l l e r  t rans fer  funct ion. Various methods f o r  d i sc re t i za t i ons  are 

compared l a te r  . 



Tusti  n's Approximation 

Tust in 's method enjoys the mer i t  o f  s imp l i c i t y .  This method i s  

usual ly q u i t e  accurate, does not  introduce spurious solutlons, and i s  

i dea l l y  sui ted f o r  operational calculus operstions due t o  i t s  cascading 

property. To apply Tust in ts  method, f i r s t  d i v ide  the  numerator and 

denominator by the highest power of s i n  the  denominator, s", then 
I i 

replace ( 5 by ( {- Ii t o  obta in the  d iscre te  t rans fer  function. 
2- 1 

For G(s) consist ing of a simple pole a t  -a, 

S t ra igh t  Line Approximation 

This technique assumes t h a t  the exc i ta t i on  can be approximated by 

a ser ies o f  s t ra igh t - l i ne  segments as shown i~ Fig. 2.4(a) fo r  an 

a rb i t ra ry  function. The piecewise l inear  input may be applied t o  any 

system by p lac ing a sample and a t r i angu la r  hold (unreal izable f i r s t  

order hold) before the  normal input as shown i n  Fig. 2.4(5). For the 

above examp l e 





f o r  the s t ra igh t - l i ne  approximation. 

Gal n and Phase Shi f t  

An approximation of continuous a ~ t o p l l o t s  w i th  d i g i t a l  au top i lo ts  

should Include matching the  gain, phase sh i f t ,  and steady s ta te  er rors  

o f  the  systems. 

The gain and phase s h i f t  o f  t he  d i g i t a l  and analog con t ro l l e rs  i n  

the  frequency domain w i l l  now be considered. 

Referr ing t o  Fig. 2.3(b? and using Eq. (2.41, 

The frequency range o f  i n te res t  I s  

w * 05/2  

where o i s  the input frequency and us i s  the sampling f~equency. 



I f  the saapling theomm i s  satisfied (and it w i l l  be for cases of 

i nterest hem 1 

I E*( jd *T C( j.1 for r < uS/2 

Thus €q. (2.17) beoorses 

For the continuous transfer function in Fig. 2.3(a) 

The transfer function &%tined f m  Eq. (2.20) i s  to be matched as 

closely as possible to the transfer function of Eq. (2.21). 

For the gain 

and 

For the phase shi f t  

R ~ O D U C I B ~ ~ ~ Y  OF THB 
OmGmAL PAGE IS POOR 



Therefore 

As indicated i n  Eq. (2.24) and Eq. (2.27) the di f ferences i n  the  gain 

and the phase s h i f t  o f  the  d i g i t a l  c o n t r o l l e r  and the  analog con t ro l l e r  

can be divided i n t o  two terms; one i s  due t o  G ( j w ) ;  the  other i s  due 
ho 

t o  G A * ( j w ) / G ( j u ) .  The fonner depends only on the sampling frequency, 

whereas the  l a t t e r  would depend on the  spec i f i c  continuous t rans fer  

funct ion t o  be d iscret ized and on the  spec i f i c  d i sc re t i za t i on  technique 

used as wel l  as on the sampling frequency. It i s  in teres t ing  t o  compare 

the  di f ferences due t o  the two terms above i n  a spec i f i c  example. 

Consider the t rans fer  funct ion 

I 
G ( s )  = s.( 

Tust in fs  approximation from Eq. (2.13) w i th  a = I i s  

For f s  = 5, T = .2 



For f, = 10, T = .I 

For fs = 20, T = 0.05 

The straight-line approximation from Eq. (2.14) wiih a = I i s  

For fs = 5, T = .2 

For fs = 10, T = .I 

For fs  = 20, T = 0.05 

For the zero-order hold 

2n s i n  n(w/os) 
Gho(jw) = - e -jlI(o/os) 

W 
S I I ( w / w s )  



s i n  P(u/u,) 
Icho(~"'I = 1 fl(u,us) I 

and 

And, f m n  Eq. (2.34) 

For the frequencies of interest, 

Therefore, 

The resu l ts  are shown i n  Figs. 2.5, 2.6, 2.7, 2.8, and 2.9. Fig. 2.5 

shows IG( jr) 1 and G *  j 1 as a function of frequency f o r  d i f ferent  

sampling frequencies. The d is t inc t ion between the two d i f fe ren t  approxi- 

mation methods has been ignored because the differences are negl ig ib le f o r  

the present purpose. This i s  discussed la te r  i n  more detai l .  It i s  noted 

that  i n  the lor frequency range, IG~*(  j w )  1 f o ~  lows IG( j w )  1 almost perfect ly 

and i n  the high frequency range, (GA*( j w l l  f o l  lows IG( j w )  1 more closely as 
G 

the sampl ing rates get higher as expected. Figure 2.6 shows I ho( and 
-CL 

I I ~ , * ( j o ) / ~ ( j w ) l  as a function o f  frequency. From Fig. 2.7 t o  Fig. 2.9 bh0( jw) and FA*( j w )  -/G( ju) are shown fo r  d i f fe ren t  samp l i ng 
b 

f reqwncies. It i s  noted tha t  / Gho( j w )  i s  much larger than 

G *  j w  - /h( ju )  over most of the frequency range fo r  a l  l samp l i ng 

frequencies . 



I Figure 2.5 F-bqnitnde P l o t  of  the  (:ontinuous Trarisfer Functictn - 
and i t s  D iscre te  Transfer Functions f o r  r i f f e r c n t  s b l  

Sampling Frequencies where Tust in  and Stra iqht -L ine 
,\pprox imat ion Methorls Wcre Used 
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Consideration of Figs. (2.5-2.9) shows t h a t  i n  t h i s  d i sc re t i za t i on  

process .the phase sh i f t  wou l d be a more important determi n i  ng fac tor  

than the  gain. For example, f o r  f S  = 5 samples/sec, a t  o = 3 rad/sec 

/ ~ ~ * ( j o )  - / + / g o 0  (s t ra igh t - l ineapp. )  

and 

Thus 

and 

The change i n  phase s h i f t  by -17.3O would produce more s i g n i f i c a n t  e f f e c t s  

than the  change i n  gain by 0.97 i n  most p rac t i ca l  systems. I n  fact, i t 

i s  found that over most o f  the  frequency range of i n te res t  the  phase 

s h i f t  i s  more important than the gain. 

I t  i s  important t o  note t h a t  i n  the range o f  useful frequencies the  

change i n  phase s h i f t  due t o  d i sc re t i za t i on  comes from the zero order 

hold and one cannot choose between the above two approximation techniques 

on the basis o f  performance. A designer would be j u s t i f i e d  i n  using the 

simpler o f  the techniques. 

It can a lso  be demonstrated f o r  general cases using Tust in 's  approxi- 

mation t h a t  t h e v a l u e o f  i A X ( j o )  - / ~ ( j o )  i s n e g l i ~ i b l e c a n p a r e d  t o  4- The demonstra Ion proceeds as f o l  lows. 

22 



Assume a transfer  function with a simple pole, 

Then, using Tust i n's method 

The phase angle o f  the approximation i s  given by 

2 WT GAX( j w )  = -tan-'[ 3 tan ( 7 11 (2.40) 

Now, Eq. (2.40) should be compared wtih Eq. (2.38). Let 0,  and02 be 

defined as 

Then 

tan 82 - tanl 
tan(B2 - el) = I + tan B2tan 01 



Now show t h a t  the numerator of Eq. (2.42) i s  negl ig ib le.  F i r s t ,  

Referr ing t o  Eq. (2.371, wT/2 i s  the  phase lag due t o  the zero-order 

hold. 

wT If  ( T 1 : - 5 O  (which should be done t o  rea l i ze  a d i g i t a l  c o n t r o l l e r  

t h a t  approximates the  continuous case), t he  tangent of the angle may be 

replaced by the  angle so 

wT tan - = 
2 

wT/2 

and from the numerator of Eq. (2.42) 

For the case where the t rans fer  funct ion has a p a i r  o f  complex 

poles, a s im i la r  development i s  possible. 

Because Tust in 's approximation has a cascading property, i .e. 

the above approximatian holds f o r  general t rans fer  functions. 



Further Invest igat ion o f  gain and phase d i f ferences introduced by 

the  d l sc re t i za t l on  process f o r  the  example o f  the  simple f i r s t  order 

po le  I s  summarized I n  Figs. 2.1@ through 2.16. 

Figure 2.10 shows the  r a t i o  I ~ ~ * ( j m ) / ~ ( j w ) l  f o r  several values o f  

system time constant as a funct ion o f  the  r a t i o  o f  frequency t o  sampling 

frequency. Tust in 's method was used f o r  the  approximation. Tbe normalized 

magnitude o f  t he  zero-order hold i s  a lso  shown f o r  comparison. 

Figure 2.11 i s  a p l o t  o f  the  phase f o r  t he  same conditions. This 

f i g u r e  re i te ra tes  the conclusion tha t  the  phase lag introduced by the 

zero-order ho l d predomi nates. 

Figures 2.12 and 2.13 d i f f e r  from Figs. 2.10 and 2.11 only i n  t h a t  

the  l i nea r  segment input approximation was used f o r  the  system. Again 

the phase lag of the  zero-order hold predominates. 

Figures 2.14 through 2.15 compare the gain and phase s h i f t  o f  

several d i sc re t i za t i on  methods f o r  two sampling frequencies. These 

f igures show t h a t  one o f  the simpler methods (Tust in) i s  a lso  one o f  

the  more accurate methods considered f o r  t h i s  appl icat ion. 

Select ion o f  the Simulation Increment (Computer Sample Period) 

One o f  the  most important c r i t e r i a  i n  the  choice o f  a par t icu  la: 

d i g i t a l  s imulat ion method i s  the  length o f  the simulat ion increment re- 

quired t o  produce a given accuracy. It has been wel l  documented i n  the  

l i t e r a t u r e  and i n  our e f f o r t s  t h a t  somemethods require a smaller simulat ion 

increment than others t o  produce equivalent resul ts ,  and , i n  fact,  some 

methods are unstable f o r  increments t h a t  produce good resu l t s  i n  other 

methods. Therefore the choice of the smallest simulat ion increment t o  

produce a given accuracy has been the subject o f  recent invest igat ion. 

This top lc  i s  o f  pa r t i cu la r  importance when the simulat ion must be 

performed i n  rea l  time and on the smallest possible machine. 

The s t ruc ture  o f  the problem of f ind ing  the  smallest possible simula- 

t i o n  increment which w :  I1 y i e l d  a speci f ied accuracy f o r  a given simulat ion 

methcd suggests the  p o s s i b i l i t y  o f  using c lass ic  opt imizat ion theory. This 
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was the approach taken by Wosko and Durl ing C2.2] and Rosko C2.31. Their 

results are c u m t l y  being implemented to a id  i n  the cholce of simulation 

method and for posslble inclusion i n  the Simulation Design Package. 

Fbko and Our l i ng * s method i s  based upon the a s s q t  ion that round-of f 

errors ham been or can be made negligible for  the time increment t o  be 

determined. The problem then i s  t o  f ind a compromise between computation 

time and simulation error. The method w i l l  now be summarized. 

Formulate a perfomnce index which w i l l  mathematically re f lec t  the 

parameters to be ainimzed and the i r  re la t ive importance. Functionally, 

where E i s  a measure of the simulation error and T i s  the simulation in- 

crement t o  be deteminsd. An example of  such a perfonrrance measure i s  

where 0 i s  a constant weight. 

For deterministic inputs the integral squared error fo r  a system 

simulated with interpolated intervals i s  given by C2.2, 2.31 

where y i ( t )  and yA( t )  are the outputs of the ideal and approximated 

systems respectively . Using Parseva l 's theorem we may express the i nte- 

gral squared error as 

where Ow(w) i s  the spectral density of the error. 

For the case of discrete simulation where the error i s  considered 

only a t  the sampling intervals, the summation of squared error i s  given 

by C2.2, 2.33 



ouhlch m y  be e v a l w M  by s w i n g  the residues o f  the poles of the 

integrand inside the un i t  c i r c l e  i n  the z-plane. 

Select a reasonable increment value, T = T1, and calculate the 

i n i t i a l  value o f  the error using the appropriate error cr i fer ion. This 

gives an i n i t i a l  value o f  the performance index. 

Chlculate an estimated value of the error and performance index by 

A necessary condition fo r  optimality i s  
a 

which yields 

Use T = T2 t o  predict E using the appropriate error formulation. 

Then calculate 

subject t o  the constraint 

- -  AJ2 - IJ2 iZJ11 2 lo 
J 2 

(2.57) 

where I'0 i s  a constant t o  be chosen. 

For a l l  succeeding steps, m - > 3, the following procedure applies: 



where Lagrangian interpolat ion has been used, and 

=m = T(T-TI)(T-T2) - * *  (T-Tm) 

and 

1 -  d 
'm e x  IIm(T). 

2)  Mow calculate 

3) Calculate Tm = T using Newton-Raphson quasi l inearizat ion 
m, k 

where 

j ' ( ~~ - ,  1 
T = T  - f o r  k = I 

m,l m-l j l l tTm ,I - 
and 

A 

J"Tm,k-l 1 
T = T  - 
m,k m,k-l 

fo r  k > I 
J"(T 

m, k-l 1 

subject t o  the constraint 

where T O  i s  a chosen constant. 

4 )  Calculate the predicted value Em using T = Tm and the appropriate 

er ror  formulation. 

5 )  Ca lcu la te  the performance index 



subject t o  

The calculation tentnates whenever Eq. (2.66) i s  satisfied. 

It has been shown that  the discretization method i s  unimportant 

from a performance view based on phase s h i f t  and gain considerations. 

This conclusion w i l l  also be checked using the procedure presented above. 

Ccnclusions and Work i n  Pmgress - 
The performance o f  8 continuous autopilot which i s  implemented 

d ig i t a l l y  i s  affected so mtrch 3y the zero order hold that  the discret i -  

zation method i s  a secondary conslderaiion. Tustin i s  a re la t ive ly  simple 

method that i s  satisfactor). Computer speed (sampling rate) may be 

established on the basis of the phase s h i f t  a designer w i l l  allow t o  be 

introduced by the zero order hold. Phase lag decreases as sample speed 

increases. Gain constants should be maintained t o  keep steady state 

errors consbnt. The re lat ive s tab i l i t y  of  the a i r c ra f t  w i l l  be de- 

creased by the d ig i t a l  implementation so the value of computer sampling 

time should be based on the decrease i n  phase margins a designer i s  

w i l l i ng  t o  allow. This value can be determined through sensi t iv i ty 

studies. Work i s  beginning on an example sensi t iv i ty  simulation t o  

demonstrate how one can approach +he problem of specifying an allowable 

change i n  phase margins. Optimum simulation increment work i s  also 

underway t o  give credance to the above conclusions from another point 

o f  view. Round o f f  error work i s  t o  be done during the next year. 

Further studies of discretization methods considered i n  t h i s  section 

w i l l  be undertaken for  more complex (higher order) systems with a 

view toward possibly u t i l i z i n g  phase lead introduced by some of the 

methods t o  of fset  phase lag Introduced by the zero-order hold. 
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Ill. FREQUENCY DOMAIN SYNTHESIS OF DISCRETE REPRESENTATIONS 

Analyrls of  I lnmr, continuous time systems i s  frequently done I n  

the frequency domaln. By use of the Laplace Transform, d l  f f emnt la l  

equations are replaced by algebraic equations which, i n  general, at* 

slmpler fo solve. In  designing a discrete time system t o  approximate 

the performance o f  a part icular continuous time system, it would be 

helpful i f  some of the famil iar analysis techniques could be ut i l ized. 

A design procedure i s  presented by which e discrete time transfer 

functlon can be developed i n  the frequency domain. The result ing system 

w l l l  have frequency domain characteristics simllar t o  the continuous 

time system from D.C. t o  one half the sampling frequency. It w i l l  also 

be shown that  the time dornaln performance of the two systems w i l l  be 

similar. The cha~acter ls t ics  of  the type of continuous time system 

whlch can be most closely approximated using t h i s  design method w l l l  

also be discussed. 

A simple design example w i l l  be presented t o  explain the methodology 

o f  the design procedure. Following that, the frequency domain design 

and time domfn evaluation fo r  the autopilot w i l l  be discussed. 

Explanation of Design Procedure 

The transfer function fo r  t h i s  example i s  shown i n  Figure 3.1 

and the sarnp l I ng frequency I s  chosen (arbi t r a r i  I y 1 t o  be 20 rad/sec. 

The design obJective i s  t o  develop a discrete time transfer functlon 

F(z), whose frequency domain character:stics w i t  I closely approximate 

those of F(s) from 0 t o  10 rad/sec. A graphical version of the design 

procedure, w i l l  be presented t o  i l l us t ra te  the method. Part o r  a l l  of 

the procedure can be automated. 

The f i r s t  step I s  t o  p lo t  the magnitude of the transfer function 

versus frequency, i.e., 20 log F(jw1 versus log w. The p lo t  need not 

extend higher i n  frequency than one half the sampling frequency and 

may go as low I n  f reqdency as desi red. 



Figure 15.1 Po;ocrc l . l o t  for ?amp 1.. Problcw~ 
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The next step i s  t o  def ine a complex var iab le  p such t h a t  

From 2-transform theory 

and f o r  rea l  frequencies t h i s  hecomes 

where T = 2r/uS 1 s the  samp l i ng per rod, and w i s  t he  samp l i ng frequency 
S 

i n  radians per second. Subst i tu t ing Eq. (3.3) i n t o  Eq. (3.2) y i e r d ~  

9y factor ing and u t i  l i z i n g  tr igonometr ic ident i t ies ,  Eq. ( 3 . 4 )  can be 

expressed as 

p = j A  = j s i  n(wT/2)/cos(wT/2) = jtan(wT/Z) (3.5) 

The magnitude p l o t  o f  Eq. (3.1) i s  now re-plotted versus the f re -  

quency A s-:h t h a t  the fo l lowing r e l a t i o n  i s  t rue  (see Figure 3 . 2 ) ;  

I n  other words the magnitude of F( jw)  a t  a pa r t i cu la r  frequency w i s  
i 

mapped i q t o  a po in t  on the  F( jA)  p lo t ,  having the same magnitude and 

occurr ing a t  a frequency Xi, where 

When w = 0, A = tan to)  = 0, and when o = w /2, A = tan(s/2) = m. Thus, s 
the  frequency r a e - j e  0 2 w 2 us/? maps i n t o  the frequency range 0 - < X - < m. 

The next step i s  t o  synthesize an equation for  F(p) by inspecting the 

magnitude p l o t  j u s t  made. The p l o t  05 F( jA)  versus X w i l l  lcok similar- 

t o  the p l o t  o f  F(jw1 versus w a t  low frequencies. As X increases, T ( j X )  

w i  I I approach the value t h a t  F (  j o )  has a t  wS/2 a long a hor i  zontr I asymptcte. 



Figure ;.:' i.lilt;ni t u d e  plo  I I, jr !;amp l~ Prob l t;m Warped Frequell,y 
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By applying the re lat ion that  the actual magnitude curve d i f fers  from 

the asymptotic curwe by 3 dB a t  the break frequency, F(p) can be seen 

t o  have a lag break frequency a t  A1 = .325 and a lead break a t  X2 = 1.91. 

Therefore, F(p) has the form (p + A2)/(p + A l l .  Marmalizlng to unity 

gain a t  DC, we have 

It can be noted that the break frequency A 1  = .325 corresponds t o  u = 2 rad/sec., 

the break frequency of the original F(s). 

The next step i s  t o  make the substitut ion 

in to Eq. (3.8). Simplifying, t h i s  results i n  the expression: 

Equation (3.9) can be written i n  the form 

where K1 = ( A ~ / A ~ ) ( A ~  + I )/(Al  + I), K2 = ( A 2  - I ) / ( A 2  + I), 
and Kg = ( A 1  - I ) / ( A 1  + I). 

The frequency response of F(z) can be determined by sett ing Z = exp(jwT1 = 

cos(oT) + jsin(wT1. This results i n  the following two expressions: 

Since z = exp(jwT1, these ?wo functions can be plotted versus the or iginal  

frequency w. The magnitude p lo t  of F(z) should be quite close t o  the 

magnitude p lo t  of F(s)  from DC t o  ws/2.  Since the numerator ar,d denominator 

of F(z) are of the same order i n  z ,  the phase s h i f t  w i l l  be zero degrees 

a t  wS/2. To t r y  and shape the phase sh i f t  of F(z) t o  more closely 



match F(s), an al l-pass f i l t e r  can be added to F(p). This resu l ts  i n  

the newv t ransfer function 

making the subst i tut ion p = (z - I ) / (z  + I )  i n t o  Eq. (3.1 1 )  gives the 

f o l  lowing: 

where 

K2 = (A2 - 1 ) / (A2  + I), 
K3 = (A3 + I)/(A3 - I), 
KI, = ( A 1  - I ) / ( A 1  + I), 

KS = ( 1 3  - 1)/tn3 + 1 1  = I/K . 
The phase o f  t h i s  new F(z) w i  l l go to -180 degrees a t  w = uS/2. The 

actual phase characterist ics of the or ig ina l  F(s) w i l l  determine how 

high i n  frequency the phase of  F(z) matches tha t  of F(s). Figure 3.3 

shows the magnitude o f  F(z), as well as the phase wi th and without an 

a l  I-pass f i  l ter .  

Tc evaluate the time domain performance, F(z) can be expressed as 

a r a t i o  o f  polynomials 

F(z) = K,[z~ + (K2 + K3)2+ K2K3Y[z2 + (& + K5)z + K4K5] 

(3.13) 
Mult ip ly ing the numerator and denominator of Eq. (3.13) by z ' ~  y ie lds 

where C ( z )  and R(z) represent the output and input of the transfer 

function, respectively. Cross mult ip ly ing Eq. (3.14) produces the fol lowing 

express ion. 



Figure  3.3 Maqnitude and r11asc for Discrete  Approximaticn with 
and without All-Pass F i l t e r  
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[I t (& + K~)z-I t & ~ ~ z ' ~ x ( z )  = K ~ C I  + (K2 t ~ ~ 1 z ' '  + K ~ K ~ Z ' ? * ( Z )  

(3.151 

Applying the Real Translation Theorem from 2-Transform theory y ie lds 

the folloooing t iam dofflain recursive equations: 

where the a's and bps are obvious from inspection o f  Eq. (3.16). By 

means of  Eq. (3.17). the output C(nT) can be found f o r  any input by 

merely specifying the sequence R(nT) as the integer n varies over the 

range of  interest. 

The location of the poles .nd zeros of F(p) and the location of the 

all-pass f i l t e r  break frequency can be optimized, using whatever per- 

f ormance c r  i t e r  i on des i red, 

The design procedure outl ined on the previous pages w i l l  now be 

applied to the p i t ch  port ion o f  the continuous time autopi lot.  The 

open-loop transfer function f o r  t h i s  system i s  

s 2 + 8 . 4 s + M  s2+5 .62s+3 .1  s +  .62 1.125s2+ 13.33s+81 

(3.18) 

The sampling frequency was chosen t o  be 40 rad/sec. This allows the range 

of interest  t o  extend t o  approximately twice the highest c r i t i c a l  f re-  

quency of the autopi lot.  



The f i c t i t i o u s  t rans fer  funct ion H(p) was synthesized i n  the 

fo l lowing manner: 

I. m g [ ~ ( j o ) ]  f o r  0 < w < 20 was calculated, as wel l  as the - - 
frequency A, using the r e l a t i o n  A = tan(uT/2). 

2. A p l o t  o f  m a g [ ~ ( j ~ ) ]  versus X was made (Fig. 3.4). 

3. Real poles and zeros o f  t l(s) a t  wi were transformed i n t o  rea l  

poles and zeros o f  H(p) a t  X where A i s  given by Eq. (3.7). 
i ' i 

4. Complex roots o f  H(s) w i th  undamped natura l  frequencies o f  w 
n 

were transformed i n t o  complex roots  of H(p) w i th  natura l  frequencies a lso  

given by Eq. (3.7). The values of the damping r a t i o s  were preserved i n  

synthesizing H(p).  

5. An i n i t i a l  value f o r  a second order rea l  zero was made by 

inspection o f  the  magnitude p l o t  made i n  step 2. This addi t ional  term 

i s  due t o  the asymptotic approach of H(p) t o  the  value of H(s) a t  

o=w5/2. 

6. The subst i tu t ion  p = (z  - I ) / ( z  + I )  was made i n  the expression 

fo r  H(p). 

7. The magnitude and phase p lo ts  of H(z )  versus w a re  made. 

8. An i n i t i a l  choice f o r  the al l -pass f i l t e r  break frequency was 

made, and the  phase curve re-plotted. 

A t  t h i s  stage the magnitude curve of t i ( z )  d i f f e r s  from that  of I t (s )  

by a m x  imum o f  1.7 dB a t  a frequency o f  6.5 rad/sec. The phase curve ot 

H(z) has the  same general shape as t h a t  o f  H(s) up t o  approximately 15 

rad/sec, but has an e r ro r  o f  about 17-22 degrees from 8 t o  15 radsec.  

It was decided a t  t h i s  po in t  t o  optimize several parameters af H(z1. 

The locations o f  the second order rea l  zero added during the design 

process and the term resu l t i ng  from the s ingle rea l  pole o f  t i (s)  3 t  

w = 5 rad/sec were simultaneously optimized. The performance c r i t e r i o n  

used was the mean absolute e r ro r  between the frequency domain magnitude 
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of  H(s) and the  magnitude o f  H (z )  over the  frequency range 0 t o  us/?. 

The values o f  these two parameters were independently stepped through 

the  range 0 t o  20 i n  i n te rva l s  o f  O.r'8 so t h a t  essent ia l l y  a l l  space 

was spanned. Using the  expression f o r  H(z) w i t h  the two optimized parame- 

ters, the  break frequency f o r  the  a1 I-pass f i l t e r  was optimized i n  a 

s i m i l a r  fashion. The performance c r i t e r i o n  used was the mean absolute 

e r r o r  between the frequency domain phase curve f o r  H(s) and t h a t  o f  

H(z). 

The frequency charac ter is t i cs  o f  the  f i n a l  design are shown i n  

Figures 3.5 and 3.6. Figure 3.5 shows the  magnitudes o f  H(s) and H(z) 

p lo t ted  versus the  rea l  frequency w. The maximum magnitude e r r o r  i s  

approximately 1.28 dB which occurs a t  20 rad/sec., and the mean absolute 

magnitude e r r o r  i s  -342 dB. Figure 3-6 sheds the  phase s h i f t  curve f o r  

H(s) and the phase s h i f t  curve f o r  H(z) w i th  and without the  all-pass 

f i l t e r .  For the curve w i th  the al l -pass f i l t e r  over t h e  frequency range 

0-16 rad/sec. the fo l lowing e r r o r  information was obtained. The maximum 

phase e r r o r  between H(s) and H(z) was 12-74 degrees, occurr ing a t  16 

rad/sec., and the mean absolute phase e r r o r  was 3.86 degrees. Over 

the f u l l  frequency range 0-20 rad/sec., the  maximum e r r o r  was 42.4 

degrees, occurr ing a t  29 rad/sec., and the  mean absolute phase e r r o r  

was 8.61 degrees. 

The optimizat ion procedure was ca r r i ed  out again; t h i s  time, using 

the mean %quared e r r o r  c r i t e r i o n  on the magnitude curve and the mean 

absolute e r ro r  on the phase curve. The maximum magnitude e r ro r  was 

1.17 dB, and the mean absolute macnitude e r ro r  was .364 dB. Over the  

frequency range 0-16 rad/sec., the maximum and mean absolute phase e r ro rs  

were 12.34 degrees and 3.52 degrees, respect ively. For the  frequency 

range 0-20 rad/sec. the maximum and mean absolute phase e r ro r  were 42.4 

degrees and 8.30 degrees, respectively. I n  each case the maximum e r r o r  

occurred a t  the highest frequency i n  the  range specif ied. 

Trying t o  use the  mean squared e r ro r  c r i t e r i o n  t o  optimize the 

locat ion o f  the al l -pass f i l t e r  produced poor resu l ts  when appl ied t o  

t h i s  system. With an al l -pass f i l t e r ,  t h i s  design procedure prodccnq a 
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Figure 3.6 Phase of Autopilot and its Discrete Approximation 
with and without All-Pass Filter 



phase s h i f t  o f  -180 d~grses  a t  aS/2, regardless o f  the phase s h i f t  o f  H(s). 

For the continuous autop i lo t  the phase s h i f t  a t  20 radlsec. i s  -137.6 

degrees. With the sampling frequency fixed, nothing can be done to reduce 

t h i s  large er ror  a t  ms/2. Slnce the mean squared er ror  c r i t e r i on  tends 

t o  accentuate large errors, applying t h i s  c r i t e r l on  t o  the phase curve 

resu l ts  i n  increased errors a t  low frequencies without substantial ly 

reducing the errors near as/2. 

For the optimization schemes t r i e d  it appears t ha t  f o r  t h i s  system the 

mean squared magnitude er ror  and mean absolute phase er ror  c r i t e r i a  pro- 

duced s l i gh t l y  smaller errors than the mean absolute magnitude and phase 

error c r i t e r i a .  The transfer functions hr the two real  i ta t ions  are 

shown below. i n  each cas3 they are o f  the form: 

In  the table below the heading MAM/W4P indicates the mean absolute 

magn! tude and mean absolute phase error c r i  t e r  la, and MSM/MAP i ndicates 

the mean squared magnitude and mean absolute phase er ror  c r i t e r i a .  



HB(Z) represents the second order rea l zero added during design, H6(z) 

i s  the s ingle real  pole of H(s) whose locatlon i n  Htz) was optimized; 

and Hg(z) i s  the al l-pass f i l t e r .  

Dgs igq Cons I derat ions 

Several factors concerning t h i s  design procedure should be mentioned. 

First ,  when H(z) I s  expressed as a r a t i o  of polynomials, the degree of 

the numerator and denominator i n  powers o f  z w i l l  be equal. The degree 

o f  the polynomials i n  z w i l l  be equal t o  one, plus the highest degree o f  

the polynomials i n  H(s). The addit ional power o f  z i s  due t o  the a l l -  

pass f i l t e r .  I n  t h i s  example H(s) was o f  seventh degree i n  the denominator 

and f i f t h  degree i n  the numerator. H(z) was o f  eighth degree i n  both 

numerator and denominator. Because o f  the equal degrees of the numerator 

and d e m i  nator i n H( z 1, the phase s h i f t  a t  rs/2 w i  l l be 0 degrees i f  no 

all-pass f i l t e r  i s  used, and -180 degrees i f  a phase lag all-pass f i l t e r  

i s  included. A phase lead all-pass f i l t e r ,  ( A  + p)/(X - p), produces 

an unstable condition. In  the frequency domain a good fit can be obtained 

fo r  the magnitude curve over the range 0 - -: w - c ws/2. For the phase 

curve the closeness o f  f i t  depends on the phase characterist ics o f  the 

continuous system. 

Time Domain Evaluation 

I n  the following discussion concerning time domain performance the 

H(z )  obtained from the mean absolute magnitude and phase error c r i t e r i a  

w i l l  be used. This H(z) w i l l  be referred t o  as the DISCRETE approximation 

t o  H(s1. 

To obtain the time domain response of  the continuous time autopi lot  

a fourth order Runge-Kutta-Gill numerical integration was performed. The 

integration step s ize was chosen t o  be T/IO. This step s ize provides 

approximately 48 samples per period of  the highest damped natural fre- 

quency i n  H(s) and 12 samples per time constant f o r  the shortest expo- 

nential time constant. The inputs chosen were the step function and 

s i ne waves of each of the Integer rad Ian frequencies f rom I t o  20 rad/sec., 

inclusive. 



The time response of the Tustin approximation t o  the autop i lo t  was 

obtainedbyexpresslng H(s) as  a r a t i o  o f  polynomials and making the 

following substitution: 

The resul t ing expression was put i n  the form of  a recursive equatian 

and solved f o r  the same set o f  Inputs previously mentioned. 

The H(z )  obtained from the design procedure described was also 

expressed i n  recursive form and solved for  the time response. For 

each of the three sets of solutions the outputs were calculated over 

the time range 0-100 T. For the Runge-Kutta solutions t h i s  means tha t  

ten integrations w i l l  be performed per outr.ut sample. 

Using the Runge-Kutta solut ion as a reference, the mean squared 

errors of the Tustin and Discrete approximations were calculated f o r  

each o f  the inputs and averaged over the sinusoidal Inputs. Figure 3.7 

shows the errors as a function of input sinusoidal frequency. Each o f  

the approximations had negl ig ib le steady state er ror  f o r  the step 

input. The table below l i s t s  the error data f o r  the two approximations. 
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TUST I N DISCRETE 

Averaging over the 20 sinusoidal inputs yields the following data: 

Tustin Error = .1670(3066 E-02 

Discrete Error = -83237062 €003 

For the step input the errors are: 

Tustin Error = -49399356 € 4 3  

Dlscrete Error = .99913922 €903 
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For the sl  nusoida l Inputs the average mean quared error f o r  the 

Discrete approximation i s  ons half that  o f  TustInts appmlmt ien .  The 

g m t e s t  inprwemnts over Tust i nts  ,method l I e  I n  the frequency range 

8-17 rariisw. In  th io  range the magnitude curve o f  the OlSCRETr system 

f l t s  that  of the cc atinueurs s~r tetn very closely, with a maximurn difference 

of -34 dB. The phase cutves also have a good f i t  over most of t h i s  

frequency range, with less than 10-degree error from 8 to 15 rad/sec. 

and 18-degree error a t  L 7 rad/sec. 

Over t h i s  S;~R#) frequency range, the Tustln frequency domain magnitude 

error varies fnwn 2.1 lo 15.7 dB, referenced to the exact magnitude func- 

tion. The phase s h i f t  error i n  t h i s  frequency range averages 16 degrees, 

wlth a maximum of  32 degrees a t  17 rad/sec. and i s  25 degrees a t  15 rad/sec. 

A procedure has been presented by which a discrete time system can 

be designed to have frequency domain characteristics simi lar to  that  of 

a continuous time system. For the magnitude curve a close f i t  can be 

obta 1 ned w e r  the frequency range 0 to rs/2. For the phase curve the 

closeness of f i t  depends on the phase characteristics o f  the continuous 

system. The design procedure can be carrled out ei ther graphically 

o r  by computer. The location of a l l  c r i t i c a l  frequencies I n  H(p) and, 

thus, the form of H(z) could be optimized, hssed on a number of  d i f ferent  

performance c r i te r ia .  An tmproveriint i n  time domain performance i n  the 

midd i e  and upper f requciitcies was obtained, cornpared with Tustin's method, 

with a d e g r ~ h t i o n  of performance i n  the low frequencies. 

It appears that frequency domain methods, and the part icular procedure 

described here, are va l id  design approaches. The characteristics of the 

continuous time system being modeled acd the input frequency ranges of 

interest w i l l  determine which approach i s  best. 



An investigation in to the su i tab i l i t y  o f  various substitutional 

formulas and techniques for real time simulation i s  being conducted. 

The study i s  divided in to two phases, the first being concerned with 

l inear systems and the second with nonlinear systems. Results f rom the 

f t r s t  phase were reported i n  the Semi-Annual Report of September 1975 

and w i l l  not be repeated herein. Progress t o  date i n  the second phase 

of t h i s  work i s  the subject of the remainder o f  t h i s  section, 

Several metbods for  d ig i t a l  simulation of l inear systems have been 

investigated, and results show that  the 16M method i s  probably the best 

i n  terms o f  error and computation time. Present e f fo r ts  are being 

directed a t  the study of nonlinear systems. 

Along with the substitutional methods, other methods, such as Iffl, 

Optimum Discrote Approximation and Discrete Compensation, are being 

assidered. There are no other methods currently available from l i tera-  

ture and publications. 

Comprehensive studies o f  simulations of nonlinear systems, such as 

error analysis, selection o f  simulation increment, etc. i s  currently 

beyond the state-of-the-art. This i s  because nonlinear systems are 

d i f f i c u l t  t o  classify. Comparisons of these d ig i t a l  simulation methods, 

therefore, are largely experimental. Several systems with di f ferent 

degrees of complexity and nonlinearities w i l l  be studied before any 

conc l us i ons are reached. 

A simple and "s l ight ly  nonlinear" system was investigated, and the 

results showed l i t t l e  ef fect  by the nonlinearity on the overall system 

response obtained with di f ferent methods. Another system i s  currently 

under investigation and w i l l  be simulated as soon as the design i s  

comp I eted . 
The f o l  lowing paragraphs suggest the methodology being used t o  

develop the necessary computer software for  analyzing various procedures. 

1. 18M method: The objective i s  t o  derive transfer functions of 

Fig. 4.1 such that the poles of the i ~ d i v i d u a l  transfer functions (Gl(z) 





and G2(z)), as well as the poles of the overal l  closed loop transfer func- 

tion, are correct. This i s  done by matching the closed-loop eigenvalues 

and the s ta t i c  gains of  the continuous and discrete system models. 

Poles of  Gl(r) and G2(z) are i n  the same location as GL(s) end 

G ~ ( s )  i n  the s-plane; therefore, the transient response w i l l  be correct. 

This characteristic i s  not adequately preserved I n  other substltutIonal 

methods (Tustin, Boxer-Thaler, Madwed, etc.). Note that  G1(z) and GZ(z) 

are not the 2-transforms of Gl(s) and G2(s) but are transfer functions - 
t o  simulate the continuous response. 

The design procedure i s  as follows: 

(a) Rglace the continuous transfer functions by the discrete 

transfer function, using the 2-transform. A single-period 

delay i s  inserted i n  the feedback paths t o  insure real izabi l i ty .  

This delay w i l l  be compensated for I n  the f i na l  model. 

(b) For each transfer function the s ta t i c  gains are matched 

between the discrete and continuous blocks. The f ina l  

valu? theorem i s  applied t o  f i nd  the gain necessary t o  

equate the s ta t i c  gains between the two transfer functions. 

(c) Each nonlinear element i s  replaced by a nominal gain, and 

the closed loop eigenvalues of the coritinuous and the 

discrete systems are made equal by insert:ng a gain i n  the 

forward loop. This i s  the most tedious task fo r  a complex 

system of order higher than 4 and with a mult iple input/output. 

Fortunatbly, t h i s  mechanism can be implemented on a d ig i t a l  

computer, as proposed i n  an ISM report (Numerical Techniques 

for Real-Time Dig i ta l  F l ight  Simulation). This program w i l l  

be discussed i n  more detai l  i n  a later part  of t h i s  section. 

( d l  Finally, the steady-state gains of the over-all closed loop 

system are matched. The discrete system i s  also matched t o  

either a specif ic input or  i t s  approximation. An input 

transfer function w i l l  be attached i n  f ront of  the discrete 

system. There are two ways of approximating the input: 



one by a stair-step function (zero order hold); and one 

by s t ra ight  l i ne  s ~ t s  ( f i r s t  order hold). 

lnput approximation by a stair-step function: To f i nd  the 

input transfer function, equate the 2-transform o f  the over- 

a l l  continuous system with the t ransfer function o f  the 

over-all discrete system. Since the zero-order hold w i l l  

introduce a half-period lag, the stair-step approximation 

must be designed wi th  a half-period advance so as to obtain 

the correct simulation. 

lnput approximation by stra ight- l ine segments: The same pro- 

cedure i s  applied as above, but no compensation f o r  the time 

s h i f t  i s  necessary, A sunv~ry  i n  block diagram form i s  shown 

i n  Fig. 4.2. 

Programing de ta i l s  for  matching eigenvalues i n  the IBM method are 

as follows. As mentioned ear l ier ,  matching eigenvalues of  complex con- 

tinuous and discrete systems i s  a formidable task which cannot be per- 

formed by hand. It has been proposed t h a t  ccnnputer programs be used t o  

p l o t  root loc i  o f  the systems and, thereby, determine the gain required 

t o  match t he i r  pole locations. 

There are two possible approaches f o r  using a d i g i t a l  computer t o  

compute root  loci.  One i s  t o  determine the character ist ic  equation as 

a function o f  loop gain and solve it f o r  various values of loop gain. 

I n  a mul t ip le  loop complex system t h i s  i s  not always possible. There- 

fore, it i s  desirable t o  have the computer derive the character ist ic  

equation. Another approacC i s  t o  apply Evan's ru l e  d i rec t l y  wi th the 

a id  o f  the computer. Thi. method, however, does not f u l l y  take advantage 

of  the high speed computer. 

IBM has developed a method based on Evan's ru l e  and used the cm- 

puter e f f i c i e n t l y  a t  the same time. The program developed by IBM allows 

the user t o  f ind  root loc i  of systems (discrete o r  continuous) d i rec t l y  

from the block diagram. In  the very near future a s imi lar  program which 

can be used on our computer w i l l  be developed so tha t  more complex systems 

can be simulated. 
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Figure 4.2 Block Diagram of Design Method 
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The p r i n c i p l e  o f  t h e  program i s  as follows. The charac te r i s t i c  

equation o f  the  system shown i n  Fig. 4.3 i s :  

Equation (4.1) i s  s a t i s f i e d  only i f  G(s)H(s) i s  real,  s ince K i s  real .  

Furthermore, if a complex number S = a + j w  i s  subst i tu ted i n t o  G(s)H(s), 

t he  r e s u l t  w i l l  be another complex number q = u + iv.  Therefore, t he  

so lu t ion  of Eq. (4.1) i s  a l l  s t h a t  w i l l  g i ve  v = 0 and K = -1 /U.  It 

can also be shown t h a t  f o r  any path crossing a locus, u w i  l l change sign. 

Therefore, the  l e f t -ha l f  plane o f  s i s  scanned u n t i l  a change i n  s ign o f  

v i s  observed, then the  po in t  l y ing  on t h e  locus can be found by i te ra t ion .  

The same p r i n c i p l e  can be appl ied f o r  a d iscre te  system t o  f i n d  i t s  

roo t  locus. 

It has been reported t h a t  the developers of t he  IBM method success- 

f u l l y  simulated i n  real- t ime complex, six-degree-of-freedom space vehicles 

and a i r c r a f t  w i th  considerable improvements over other methods. For 

example, f o r  the  same degree of accuracy, t h i s  method reduces the  compu- 

t a t i o n  time by 90 t o  95% over the  Runge-Kutta method i n  several cases. 

2. Cptimum Discrete Approximation: 

The ob jec t ive  of t h i s  design technique i s  t o  approximate each element 

o f  the  t ransfer  funct ion so t h a t  the summation o f  squared e r r o r  i s  minimized. 

This technique el iminates the  need f o r  i nse r t i ng  a period delay i n  the feed- 

back path, since the  r e a l i t a b i l i t y  has been taken i n t o  account during the  

design process o f  the  d iscre te  t rans fer  funct io-*.  Each d iscre te  t rans fer  

funct ion i s  considered t o  consist  o f  a tsnuam connection of two elements, 

Fl(z) and F2(z).  Fp(z)  i s  ca l l ed  tho t i xed  port ion, and it can take the  

f o m  

F 2 ( z )  = z - ~  ( 4 . 3 )  

where ? = 0, I. Whether o r  not Fl z )  = I o r  F2( z )  = 2-I depends on the 

system under consideration. Transfer functions where the  degree o f  the  

numerator i s  lower than the degree of the denominator a re  ca l l ed  closed- 



Figure 4.3 General System Diagram 



loop rea l  izable t o  ensure the  rea l  izabi  I i t y  of the  whole system. There- 

fore, i n  designing t h e  d iscre te  t rans fe r  funct ions we i n i t i a l l y  se lec t  

F2(z) = I. If none of the  d iscre te  t rans fer  funct lons t u r n  o u t  t o  be 

closed-loop real izable, then we p i ck  the  simplest one t o  be redesigned 

w i th  F2(z) = z". This w i t  l great ly  s imp l i f y  the  work involved. 

Sage and Burt  have shown t h a t  the  d iscre te  "optimum" t rans fer  func- 

t i o n  i s  

w i th  

where U( t 1 i s a t e s t  signa l and where [a]+ denotes a I l poles and zeros 

w i t h i n  the  u n i t  c i r c  le, [-I - denotes a l I poles and zeros outside the  

u n i t  c i r c le ,  and i-1 i s  the  por t ion  w i th  poles w i t h i n  the  u n i t  c i r c l e .  
P+ 

The procedure can be summarized as follows: 

I. Select a t e s t  signal, U(s1, usual ly  e i t he r  a u n i t  ramp o r  a 

u n i t  step. 

2. Design each d iscre te  t ransfer  function, using the  Flopt(z) 

equation. Let F2(z) = I i n  each case; and, i f  Flopt(z) i s  not  closed- 

loop real izable, then redesign it wi th  F2(z) = 2-'. Then 

The procedure above does not  take i n t o  account the nonl inear cha rac te r i s t i c  

o f  the  system. I t  w i l l  work adequately f o r  a s l i g h t  nonl inear i ty .  I f  

the system i s  decidedly nonlinear, the  approximation e r r o r  can be reduced i f  

we make use o f  the f a c t  t h a t  the system i s  ac tua l ly  nonlinear i n  determi- 

ning the  "optimum" d iscre te  approximation. We can expand the  method 

above, using gain parameters before and a f t e r  the nonl inear i ty ,  These 

gain parameters w i l l  be adjusted during the  simulat ion process. 



3. Di screte Compensat Ion: 

I n  substitutional methods It i s  necessary t o  inser t  a perlod delay 

i n  the feedback path to ensure rea l l zab i l i t y .  This may s h i f t  the pole 

locations i n  some systems. The I6M and Optimum Discrete Approxlmatlor 

methods compensate t h i s  delay i n  the deslgn process. I n  the Discrete 

Compensation method the closed-loop transfer function i s  discretized, 

using any discrete integrator, but improvements are made through e 

compensator t o  adjust the eigenvslues o f  the closed-loop system. 

For example, take a simple system, such as shown i n  Fig. 4.1 and 

Gl(z) = G ~ ( S ) ~ ,  

- = some i ntegrator 
S 

G2(z) = G2(s) I$ = some integrator 

H(z) = H(s) I 
= some i ntegrator 

We then di  scre t i  re the whole system as 

T i 3 ~ 1 ( ~ ) ~ 2 ( ~ )  
G A M  = I + H(s)F3Gl(s)G2(s) (4.10) It = s m  integrator 

where g3 i s  the nominal gain of the nonl inear element. Insert  a compensa- 

t o r  a f t e r  the input of  the discrete system and compare it with G d z )  t o  

obtain the coef f ic ients  o f  the compensator, whose form i s  

The f i n a l  form i s  shown i n  Fig. 4.4. 





I f  fu r ther  accuracy i s  requi red ( a t  the expense o f  more computation 

time), the coef f ic ients  o f  D(z) can be adjusted, depending on the in- 

stantaneous gain of  the nonlinear element; tha t  Is, instead o f  using 

e3 as a nominal gain t o  obtain f ixed coef f ic ients  o f  D(z), we can make 

the coef f ic ients  of  D(z) a function of g3, where Eg can be determined 

by di  r e c t  measurement nr by interpolation. 

Summary 

I n  the three mathods considered above the Discrete Compensation Method 

- .  i s  the best i n  terms of design efforts. I t s  drawback i s  excess computa- 

t i o n  time, especially wi th the coef f ic ient  adjustor. Once the computer 

program f o r  the IBM method i s  completed, the IBM method may be the logical 

choice, even though the Optimum Discrete Appr~xlmation may be more accurate 

f o r  decidedly nonlinear systems. However, no f ina l  conclusions can be 

drawn a t  t h i s  time. 

Future Tasks 

Developing a computer program t o  a id  the design o f  the IBM method. 

Further sear3h and studies of Sage's method, using calculus of  

variat ions and other techniques f o r  a nonlinear system. 

Simulations o f  various nonlinear systems wl th special at tent ion 

given t o  the c r i t e r i a  mentioned above, observing possible ef fects 

o f  a certa in t ionl inaari ty on a cer ta in  method. 



V. USE OF  PAD^ APPROXIMANTS TO THE MATRIX EXPONENTIAL FOR 
COMPUTER SOLUTIONS OF STATE EQUATIONS 

l ntroduct ion 

I n  system theory, there i s  a large c lass o f  problems which may be 

phrased i n  terms o f  l i nea r  t ime-invariant d i f f e r e n t i a l  equations, and 

which lend themselves t o  st ra ight forward solut ions. A second class, a t  

the  opposite end of t he  spectrum, consists o f  problems characterized by 

behavior which i nc I udes large t ime va r ia t i on  and s" rong non-l i near1 t i e s .  

There i s  a middle,ground, however, consist ing of a c lass o f  problems i n  

which the time-dependent parameters vary r e l a t i v e l y  slowly, w i th  weak 

non- l inear i t ies.  I n  these, it may be necessary (o r  merely desirable) 

t o  include the  e f f e c t s  o f  time- and state-dependent variables, and a t  the 

same time undesirable t o  u t i l i z e  algorithms used normally on systems of 

large computational complexity. The resu l t s  o f  the theory o f  l inear  time- 

invar ian t  systems may be used, w i th  proper modif icat ion, t o  approximate 

t h i s  class o f  systems very closely. 

The matr ix  d i f f e r e n t i a l  equation 

where A and B are constants, has the  wel l  known so lu t ion  

x ( t  + T I  = G(T)x( t )  + H(T)u(t) ,  t = kT, k = 0,.,2, ... , (5.2) 

whcre T i s  taken t o  s a t i s f y  the  Nyqulst c r i t e r i o n  on u, 

and 

H(T) = 1; exp(Ar)drB = [(IT +  AT^/^! 1 + ( A ? T ~ / ~ !  1 + ... 13. ( 5 . 4 )  

The l a s t  term may be reduced t o  

i f  the inverse o f  A ex is ts .  The above may be derived d i r e c t l y  from t + e  

Taylor ser ies o f  x ( t  + TI. 



A mom general statement i s  t rue where A = A!x,t) and i s  a slowly 

var; ..g function o f  both x and t. F.,r the class of prob l m s  where the 

system timrdependence and non- l i neari t ies are sma l I, we may s t i  I I use 

the matrix exponentai l t o  approximate the system's behavior C5. I]. That 

IS, 

A l lowi ng A t o  vary w i  th x and t, h e w e r ,  suggests consideration o f  

e f f i c i en t  techniques fo r  cmpuTation of exp(AT1. I n  sonre cases, sirnple 

sumation o f  the terns o f  the power series representation w i l l  be su f f i -  

c ient  since A m y  vary so slowly tha t  only occasional updatings of exp(AT1 

are necessary. I n  other cases, it may be necessary to recompute exp(AT1 

a t  each sanq ;e point to  achieve the desired accuracy. The pad6 appi-oximants 

t o  exp(AT) wnich w i l l  be considered offer, i n  sonre types o f  problems, 

s ign i f icant  advantages I n  computational speed and accuracy over the power 

series representation. 

Oef i n i t  i on of  pad6 Apprcrximnts 

A pad; approximant t o  a scalar power series F(z) i s  a r a t i o  o f  two 

polynomials P(z1 and Q(z), of ccder p and q respectively, abbreviated 

(p,q). I t s  s ign i f icant  feature i s  tha t  the power series expansion of 

(p,q) i s  Identical wi th tha t  of F(z) up t o  and including the coef f ic ient  

o f  zN, where N = p + q i s  the order o f  the approximant. There are N + I 

pad6 apprcximants of order N, and they are unique C5.21. For example, 

the three approximants f o r  N = 2 and F(z) = exp(z) are: 

(2, 0) = I + z + z2/2 

(I, 1 )  = ( I  + z/21/(1 - 2/21; Izl < 2 

(0, 2) = I/( 1 - z + z2/2) Izl < 1.414 (5.7) 

S!mi l a r  statements may be maje of pad6 approximants t o  6 matrix power 

series; fo r  example, the (I, I) approximant t c  ~xp(AT1 would be: 

(I, I )  = (I -  AT/^)- (I + AT121 = ( I  + kT/2)(1 -  AT/^)- ( 5 . 8 )  



O f  the general class o f  Pade approximants, some are rnore e f fec t i ve  

canputationally than others. I n  general it requires no w e  conrputatlon 

t o  calculate a (P, P I  pad6 approximant than a (P-M,P) o r  a (P, P-H), 

where M < P. Because the (P, PI  approximant i s  accurate through more 

terms, it Is the most beneficial form t o  use. I n  this paper we shal l  

compare ( 1 )  the truncated series (N, 01, and, (2) those i n  which p = q, 

i.e., (I, I), ( 2 ,  21, (3, 31, and so forth. The scalar approximnts 

(2, 21 and (3, 3) f ~ r  exp(z1 are: 

It !s shown i n  Appendix A tha t  the er ror  involved i n  using a pad6 

approximant t o  the matrix series exp(AT1 i s  a l inear function of the 

er ror  i n  approximating the scalar series exp(X T) where A i s  the m m 
magnitude of  the maximum eigenvalue o f  A. This allows discussion of  

accuracy i n  terms of the scalar series exp(X TI, wi th resu l ts  which m 
carry over d i r ec t l y  t o  the matrix series approximation. 

Accuracy vs. Required Computation 

The two classes o f  approximations f o r  the exponential were compared 

direct ly,  using three c r i t e r i a :  ( 1 )  the numer o f  matrix operations re- 

quired f o r  the approximation t o  exp(AT1, (2)  the percent er ror  i n  terms 

of  the scalar approximation o f  exp(A TI, and (3) the allowable range of  m 
XmT fo r  which reasonable resu l ts  could be achieved. It w i l l  be shown 

tha t  the inclusion of higher-ordered terms i n  the (p, p) type of approximant 

reduces error, extends the range of  A T, and i s  i n  general more e f f i c i e n t  
m 

than the corresponding (p + p, 0 1  truncated series. 

A matrix operation may be defined as a mul t ip l ica t ion o r  an inverse; 

each requires about n3 mul t ip l  ications and divisions, where n i s  the order 

~f the matrix C5.31. This i s  an ef fec t ive standard, since the matrix 

manipulations dominate the calculat ion time. By t h i s  standard, the (N, 0) 

series requires N-l matrix operations, while the (p, p) series requires 



p + I operations. For example, the ( 2 ,  2 )  and the (4, 0 )  both require 

three matrix operations; however the (3, 3) uses only four while the 

(6 ,  0 )  requires f i v e  operations. For systems o f  large order, t h i s  may 

be s igni f icant .  

A computer was used t o  calculate 5 error  i n  the various forms o f  

approximations t o  exp (AmT). Some of the more important features are 

demcnstrated i n  Figs. 5.1 and 5.2. For example, i n  Fig. 5.1, f o r  AmT = .>, 
the (4, 0) truncation y ie lds about -04% error. The (2, 2) gives appmxi- 

m t e l  y .004$ error, o r  about one order of magnitude improvement. For 

large va lues of AmT the resu l ts  are even more dramatic. For AmT = 2.0, 

a (9, 0) approximation gives -17% er ro r  compared t o  the -15% error  o f  the 

(3, 3).appmximation, which also af fords a savings o f  four matrix opera- 

tions. This alone may resu l t  i n  a considerable reduction i n  computer 

time. Fig. 5.2 shows the maximum a l  lowable values of I A ~ T ~  f o r  given 

amounts o f  error. The (p, p )  type o f  approximant i s  seen t o  have consistent- 

l y  greater range than i t s  corresponding truncated series. 

Previous l y, it has been necessary t o  choose 1 AmT ( t o  be r e  l a t i  vet y 

small i n  order t o  achieve the required accuracy wi th a short series 

approximation. Using the pad6 (p, p) approxlmants, there i s  much more 

roan f o r  choice. Larger system eigenvalues mav be included i n  the 

problem statement, o r  a longer sample time T chosen (subject t o  the 

Nyquist ra te  on u( t ) ) ,  bnd the desired accuracy may s t i l l  be achieved, 

o r  bettered, wi th in  the context of a reel-time computer simulation. 

Sumnary 

In  sumnary then, it has been shown tha t  the; (p, p )  pad6 approximant 

t o  the matrix exponential exp(AT) i s  a useful tool  i n  control system 

simulation and operation. It has the advantages o f  greater accuracy. 

larger range, more f l e x i b i l i t y ,  and i n  some cases grezter computational 

ef f ic iency than the truncated series approximation. 



TYPE O F  APPROXIMANT 

Figcre  5.1 Percent E r r o r  as a Function o f  Order of  Approximant 
f o r  Both the  (N,O) and the (p,p) Types of  Approximants 



TYPE OF APPROXIMANT 
Figure 5.2 Maximum Allowable Values of I A T I  as a Function of 

Type Approximant for a Given Error b u n d  
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Appendix A 

Relation! Beheen Matrix Series and Scalar Series 

To obtain a nteasure of the error introduced by using approximations 

fo r  the ma t r i x  exponential, one can transform t o  the n o m i  coordinates, 

It w i l l  be assumed that A has d i s t i nc t  eigenvalues. This i s  not 

overly res t r i c t i ve  since any matrix with repeated eigenvalues may be 

approximated arb i t ra r i  l y  closely by one with d is t i nc t  eigenvalues C5.41. 

The matrix exponential operating on a vector may be wri t ten as 

Likewise one can wri te the ( I, I pad6 approximants as 



The other ordered pad; approx irnants f o l  low i n a l i ke manner. I n 

each case the appmximant $s well as the exact expression for  exp(AT1 i s  

a diagonal matrix i n  the normal coordinates. Also each diagonal element 

i s  a function of one and only one eigenvalue. This fact  makes it possible 

t o  campare d i f ferent  approxinations t o  exp(AT) i n  the normal coordinates on 

an element by element basis. Also,  although we have not proved it mathe- 

matically, our numerical results indicate that  the maximum error occurs i n  

that  element corresponding t o  the eigenvalue of maximum value. Thus 

one can tes t  fo r  the accuracy of matrix polynomial representations of 

exp(AT1 by testing the corresponding scalar polynomials and u t i l i z i n g  

the eigenvalue of the A matrix having greatest magnitude. 



Appendix B 

pad6 Appmxfmants fo r  H(T) 

One further use fo r  the pad6 approximation may be considered here. 

It was shown above that  l f  A" exists, then 

H(T) = A' ' [~x~(AT) - I]B. 

The A matrix may be singular, however, and no convenient closed-form 

expression can be used fo r  H(T). For example, a zero eigenvalue i n  A 

w i l l  impose t h i s  restr ict lon. However, H(T) may be wri t ten 

This series written i n  scalar form I s  

where w = AmT. This series has the scalar ~ad; approximants: 

(I, I )  = (I + w/6)/(1 - w/3); I w l  < 3 

Use of these approximants paral lels the discussion above for the 

matrix exponential. 



V I .  ANALYTICAL INTEGRATION OF STATE EQUATIONS, 
USING AN INTERPOLATED INPUT 

One approach t o  solv ing d i f f e r e n t i a l  equations d iscre te ly  has been 

t o  use t h e  s ta te  equations, along w i th  polynomial appro>lmatlons t o  the  

input signal. The coefficients o f  the  polynomial are determined by the  

value of +he input signal a t  the  sample times. Once t h e  oolynomial 

i s  chosen, the  s ta te  equations can be integrated analytic.31 ly. One 

important feature of t h i s  approach i s  t h a t  t h e  system i s  modeled exact ly.  

The approximation i s  i n  sampling the  input. The various polynomial f i t s  

t o  the  input serve as interpolators. 

Using a f i r s t  order pdlynomial t o  represent the  input, one f inds  

t h a t  

can be approximated by 

Expressions f o r  t h e  zeroth order polynomial f i t  and the  2nd order 

polynomial f i t  have been determined and are reported along wi th  more 

d e t a i l s  on the method i n  our Semi-Annual Report o f  September, 1975, on 

t h i s  same project,  Univers i ty  Report No. EE-4041-101-75. 

Because our e f f o r t s  have been di rected i n  other areas, we have not 

ye t  obtained t e s t  resu l t s  on the accuracy o f  t h i s  technique. 


